Turkish Journal of Agriculture and Forestry




A linear-like discrete-time fuzzy controller was designed to control and stabilize a single-pool irrigation canal. Saint Venant equations for open-channel flow were linearized using the Taylor series and a finite-difference approximation of the original nonlinear partial differential equations. Using the linear optimal control theory, a traditional linear quadratic regulator (LQR) was first developed for an irrigation canal with a single-pool, and the results were observed. Then a linear-like global system representation of a discrete-time fuzzy system was proposed by viewing a discrete-time fuzzy system in a global concept and unifying the individual matrices into synthetic matrices. This linear-like representation aided development of a design scheme for a global optimal fuzzy controller in the way of the general linear quadratic approach. Based on this kind of system representation, a discrete-time optimal fuzzy control law that can achieve global minimum effect was developed. An example problem with a single-pool was considered for evaluating the performance of the discrete-time optimal fuzzy controller in the control of irrigation canals. The results obtained with the optimal fuzzy controller were compared to the results obtained with a traditional linear quadratic regulator. The discrete-time fuzzy controller was the best for the operation of the canal system, reaching the optimal performance index under unknown demands.


Optimal fuzzy controller, linear quadratic regulator, canal automation

First Page


Last Page