•  
  •  
 

Turkish Journal of Medical Sciences

DOI

10.55730/1300-0144.5731

Abstract

Background/aim: Heavy-ion irradiation seriously perturbs cellular homeostasis and thus damages cells. Vascular endothelial cells (ECs) play an important role in the pathological process of radiation damage. Protecting ECs from heavy-ion radiation is of great significance in the radioprotection of normal tissues. In this study, the radioprotective effect of ß-D-glucan (BG) derived from Saccharomyces cerevisiae on human umbilical vein endothelial cell (EA.hy926) cytotoxicity produced by carbon-ion irradiation was examined and the probable mechanism was established. Materials and methods: EA.hy926 cells were divided into seven groups: a control group; 1, 2, or 4 Gy radiation; and 10 µg/mL BG pretreatment for 24 h before 1, 2, or 4 Gy irradiation. Cell survival was assessed by colony formation assay. Cell cycles, apoptosis, DNA damage, and reactive oxygen species (ROS) levels were measured through flow cytometry. The level of malondialdehyde and antioxidant enzyme activities were analyzed using assay kits. The activation of NF-κB was analyzed using western blotting and a transcription factor assay kit. The expression of downstream target genes was detected by western blotting. Results: BG pretreatment significantly increased the survival of irradiated cells, improved cell cycle progression, and decreased DNA damage and apoptosis. The levels of ROS and malondialdehyde were also decreased by BG. Further study indicated that BG increased the antioxidant enzyme activities, activated Src, and promoted NF-κB activation, especially for the p65, p50, and RelB subunits. The activated NF-κB upregulated the expression of antioxidant protein MnSOD, DNA damage-response and repair-related proteins BRCA2 and Hsp90α, and antiapoptotic protein Bcl-2. Conclusion: Our results demonstrated that BG protects EA.hy926 cells from high linear-energy-transfer carbon-ion irradiation damage through the upregulation of prosurvival signaling trigg ith its receptor. This confirms that BG is a promising radioprotective agent for heavy-ion exposure.

Keywords

Saccharomyces cerevisiae-derived-ß-D-glucan, human umbilical vein endothelial cells, high-LET carbon-ion irradiation, radioprotection, NF-κB, prosurvival-related gene expression

First Page

1621

Last Page

1634

Share

COinS