•  
  •  
 

Turkish Journal of Earth Sciences

DOI

10.55730/1300-0985.1845

Abstract

The East Anatolian Fault Zone (EAFZ) is a left-lateral transform fault zone located between the Anatolian and Arabian plates. In this study, in order to image the upper crustal structure beneath the eastern segments of EAFZ, 3D seismic velocity variations are computed using local earthquake tomography. The initial catalog for the tomography process consists of 2200 well-located earthquakes recorded at 49 seismic stations around the study region between 2007 and 2020. 1D initial velocity model is constructed based on previous studies in the region. The maximum number of iterations and the velocity perturbations which sustain the linearity of the inversion are determined based on the detailed tests. Reliable zones of the final model are decided based on the Derivative Weighted Sum and Hit Count distribution. The resulting velocity model displays a clear velocity contrast across the surface trace of the EAFZ down to a depth of 12 km. While the Anatolian side of the fault displays higher velocities associated with the ophiolitic units in the region, the south of the fault zone is represented by lower velocities due to sedimentary deposits. The vertical cross-sections of tomographic models show a north dipping fault between Palu and Çelikhan. The complete earthquake catalog is relocated using the 3D velocity model. Together with the obtained velocity model, the relocated hypocenters indicate that the dip of the EAFZ is not uniform, the Palu segment dips to the north with an angle of ~80°, while the Pütürge and Erkenek segments dip to the north with a lower angle of ~60?70°.

Keywords

East Anatolian Fault, fault structure, fault geometry, local earthquake tomography

First Page

294

Last Page

305

Share

COinS