Turkish Journal of Earth Sciences




Since Türkiye's territory is mostly mountainous and forested, earth science studies in these areas have not been completed at an adequate level and with a satisfying resolution. However, due to the long time and cost of collecting measurements from land in large- and medium-scale studies and due to the inability to collect measurements in regular grid intervals in large-scale studies to be carried out on land, an airborne geophysical survey project was conducted in order to collect high-resolution magnetic and radiometric country-scale data. Total magnetic field and radiometry data were collected from the air between 2017 and 2022 within the scope of the country-wide Airborne Geophysics Surveys Project. The data collection flights were carried out in such a way as to follow the topography from an altitude of about 200 m above the ground. The flights were carried out considering the regular geometry of the flight profile and the general geological and tectonic structure of Türkiye in the direction of N-S with one-kilometer profile intervals. A total field magnetic anomaly map was obtained after applying the diurnal, tie line leveling, IGRF (model 2020), and differential reduction to magnetic pole (DRTP) corrections to the magnetic data. For the scope of this study, the total field magnetic anomaly and the regional total field magnetic anomaly maps were presented along with the structural boundary maps (tilt angle (TA), the total horizontal derivative (THDR) and the analytical signal (AS)) derived from these maps. During another stage of the study, the general tectonic structure of Türkiye and structural boundaries obtained from derivative-based maps (AS, TA, and THDR) were compared. General geophysical interpretation was also performed with magnetic-anomaly and derivative-based maps for the three regions characterized by high magnetic anomalies.


Aeromagnetic anomaly, magnetic, edge detection, Türkiye

First Page


Last Page