•  
  •  
 

Turkish Journal of Earth Sciences

DOI

10.3906/yer-2008-14

Abstract

We report high-resolution multiproxy analyses [lithology, μXRF and magnetic susceptibility (MS)] of two short gravity sediment cores from the crater Lake Gölcük, southwest Turkey. Our results provide a detailed hydroclimatic record for the last ~290 years. Aided with factor analysis of μXRF data and 210210Pb and 137Cs dating, our multiproxy data show that the Lake Gölcük records documented a series of wet and dry periods between ~ 1730 (±71) and ~ 2018 (±3) CE. Wet periods are evidenced by dark olive green mixed lithology (sandy, clay, and silts) and high values in MS and log(Sr/Ca). On the other hand, dry periods are associated with light olive green clayey mud lithology and high values in log(Ca/K). We relate the wet periods to negative North Atlantic Oscillation (NAO-) and the dry periods to NAO+. Additionally, all wet periods are related with time of low solar activity and dry periods, except Dalton Minimum, are related with periods of high solar activity. Consequently, we suggest that hydroclimatic changes observed in the Lake Gölcük sedimentary records were caused by the influence of large-scale atmospheric circulation and solar activity.

Keywords

Hydroclimate, paleoclimate, solar activity, North Atlantic Oscillation

First Page

601

Last Page

610

Share

COinS