Turkish Journal of Chemistry
DOI
10.3906/kim-1802-29
Abstract
Comparison of 54 M-Si--M$'$-X species is carried out using quantum mechanical ab initio and DFT computations at B3LYP/6-311$++$G**, QCISD(T)/6-311$++$G**, and CCSD(T)/6-311$++$G** levels of theory (M = Li, Na, K; M$'$ = Be, Mg, Ca, and X = F, Cl, Br). All triplet species with M = K appear more linear than their corresponding ones with Li and Na. The electronegativity reactivity descriptor for each halogen (X = F, Cl, Br) is used as a tool to evaluate the interrelated properties of these silylenes. Stability, assumed as singlet-triplet energy difference ($\Delta E_{S-T})$ for each series depends on the substituent's electropositivity, analyzed by applying appropriate isodesmic reactions. Stability of triplet M--Si-M$'$-X silylenes increases as functions of electropositivity of $\alpha $-substituents and of $\beta $-substituents. The purpose of the present work was therefore to assess the influence of different di-alkaline metals with different $\beta $-substituents on the singlet--triplet energy gaps.
Keywords
Triplet silylene, electropositivity, energy gaps, $\alpha $ and $\beta $ substituent effects, multiplicity
First Page
974
Last Page
987
Recommended Citation
ASHENAGAR, SAMANEH and KASSAEE, MOHAMAD ZAMAN
(2018)
"New triplet silylenes M-Si-M$'$--X along with some unusual cyclic forms (M = Li, Na, and K; M$'$ = Be, Mg, and Ca; X = F, Cl, and Br),"
Turkish Journal of Chemistry: Vol. 42:
No.
4, Article 3.
https://doi.org/10.3906/kim-1802-29
Available at:
https://journals.tubitak.gov.tr/chem/vol42/iss4/3