Turkish Journal of Physics
DOI
10.3906/fiz-2004-20
Abstract
Recent developments in quantum computing and the growing interest in optomechanics and quantum optics need platforms that enable rapid prototyping and scalability. This can be fulfilled by on-chip integration, as we present here. The different nanofabrication steps are explained, and our automated measurement setup is discussed. We present an opto-electromechanical device, the H-resonator, which enables optomechanical experiments such as electrostatic springs and nonlinearities and thermomechanical squeezing. Moreover, it also functions as an optomechanical phase shifter, an essential element for our integrated quantum optics efforts. Besides this, the equivalent of a beam splitter in photonics-the directional coupler-is shown. Its coupling ratio can be reliably controlled, as we show with experimental data. Several directional couplers combined can realize the CNOT operation with almost ideal fidelity.
Keywords
Integrated quantum optics, optomechanics, squeezing, feedback
First Page
239
Last Page
246
Recommended Citation
HOCH, DAVID; SOMMER, TIMO; MUELLER, SEBASTIAN; and POOT, MENNO
(2020)
"On-chip quantum optics and integrated optomechanics,"
Turkish Journal of Physics: Vol. 44:
No.
3, Article 1.
https://doi.org/10.3906/fiz-2004-20
Available at:
https://journals.tubitak.gov.tr/physics/vol44/iss3/1