Turkish Journal of Physics
Abstract
The performance of resonant sensors based on nanoelectromechanical systems depends critically on the maximum amplitude of oscillation reached in the linear regime. The maximum linear amplitude is determined by nonlinear mechanisms that can originate from the material, geometric and transduction mechanism related factors. Here we compare the two competing effects, the geometric and drive-induced nonlinearities, for a commonly used device family, the thermoelastically driven, doubly clamped beams. We find that the geometric nonlinearity dominates for most of the device designs used in the literature, however the drive-induced nonlinearity becomes the determining factor for thicker beams with small electrode lengths.
DOI
10.3906/fiz-1812-21
Keywords
Nanoelectromechanical systems, nonlinearity, mass sensing, Duffing nonlinearity
First Page
264
Last Page
271
Recommended Citation
HANAY, MEHMET SELİM
(2019)
"Comparison of geometric and drive-induced nonlinearities in doubly clamped,thermoelastic nanoelectromechanical systems,"
Turkish Journal of Physics: Vol. 43:
No.
3, Article 5.
https://doi.org/10.3906/fiz-1812-21
Available at:
https://journals.tubitak.gov.tr/physics/vol43/iss3/5