Turkish Journal of Physics




Selenium-based layered materials, and in particular transition-metal diselenides (TMDSs), have intriguing properties in the monolayer limit. Materials such as MoSe$_{2}$, WSe$_{2}$, and NbSe$_{2}$ display striking features such as spin-valley coupling at the valence-band edges and offer great potential for optoelectronics applications. Although a dozen of other TMDSs have been realized or proposed, whether two-dimensional chalcogens are possible or not is still an open challenge. In this work, we show the chemical vapor transport synthesis of a novel, atomically thin selenium-based material on oxidized silicon substrates. This new member of the two-dimensional materials family has a unique Raman spectrum similar to that of bulk selenium and has an optical gap of $\sim $1.57 eV at room temperature determined by the photoluminescence. No transition metals are found in the stoichiometry of the crystals. Analysis of high-resolution transmission electron micrographs of the monolayers reveals a distinctive set of hexagonal spots indicating a sixfold symmetry of the lattice. Atomic force microscopy measurements show the monolayer thickness to be $\sim $0.75 nm.


Selenium-based monolayer, 2D materials, chemical vapor transport, atomically thin materials

First Page


Last Page


Included in

Physics Commons