•  
  •  
 

Turkish Journal of Physics

Authors

CELAL YELGEL

DOI

10.3906/fiz-1704-24

Abstract

We investigate structural and electronic properties of the graphene-like gallium nitride (GaN) monolayer deposited on a MoSe$_{2}$ monolayer by using density functional theory with the inclusion of the nonlocal van der Waals correction. The GaN is bound weakly to the MoSe$_{2}$ monolayer with adsorption energy of 49 meV/atom. We find that the heterobilayer is energetically favorable with the interlayer distance of 3.302 {\AA} indicating van der Waals (vdW) type interaction and the most stable stacking configuration is verified with different deposition sequences. The heterostructure of GaN/MoSe$_{2}$ is found to be indirect band gap semiconductor with gap value of 1.371 eV. Our results demonstrate the potential design of new two-dimensional nanoelectronic devices based on the vdW heterostructure.

Keywords

Heterostructure, first-principles, transition metal dichalcogenides, two-dimensional materials

First Page

463

Last Page

468

Included in

Physics Commons

Share

COinS