Turkish Journal of Physics
DOI
10.3906/fiz-1208-5
Abstract
The dynamics of a system subjected to a potential equal to the sum of the Hénon--Heiles potential and that of hydrogen in an electric field was studied. The 4 Hamilton's equations of motion follow from the Hamiltonian and they were integrated numerically using the Runge-Kutta fourth order method. The Poincaré surface of a section fixed at x = 0 and px> 0 was used to reduce the phase space to a 2-dimensional plane. The analysis of the Poincaré surface, the Lyapunov exponent, and the autocorrelation shows that as the constant of motion, E, increases from 0.30 to 0.45, the dynamics makes a transition from periodic and quasi-periodic to chaotic motions.
Keywords
Hamiltonian, Hénon-Heiles, Poincaré section, Lyapunov exponent, autocorrelation
First Page
380
Last Page
386
Recommended Citation
ECHI, IDUGBA MATHIAS; AMAH, ALEXANDER NWABEZE; and ANTHONY, EMMANUEL
(2013)
"Regular and chaotic motions in Hénon-Heiles like Hamiltonian,"
Turkish Journal of Physics: Vol. 37:
No.
3, Article 14.
https://doi.org/10.3906/fiz-1208-5
Available at:
https://journals.tubitak.gov.tr/physics/vol37/iss3/14