Turkish Journal of Physics
DOI
10.3906/fiz-1109-11
Abstract
4-dimensional H_4 polytopes and their dual polytopes have been constructed as the orbits of the Coxeter-Weyl group W(H_4), where the group elements and the vertices of the polytopes are represented by quaternions. Projection of an arbitrary W(H_4) orbit into three dimensions is made preserving the icosahedral subgroup W(H_3) and the tetrahedral subgroup W(A_3). The latter follows a branching under the Coxeter group W(A_4). The dual polytopes of the semi-regular and quasi-regular H_4 polytopes have been constructed.
Keywords
4D polytopes, dual polytopes, coxeter groups, quaternions, W(H_4)
First Page
309
Last Page
333
Recommended Citation
KOCA, MEHMET; KOCA, NAZİFE; and AL-AJMI, MUDHAHIR
(2012)
"Branching of the W(H_4) polytopes and their dual polytopes under the coxeter groups W(A_4) and W(H_3) represented by quaternions,"
Turkish Journal of Physics: Vol. 36:
No.
3, Article 1.
https://doi.org/10.3906/fiz-1109-11
Available at:
https://journals.tubitak.gov.tr/physics/vol36/iss3/1