Turkish Journal of Physics
Abstract
We review our recent work towards quantum communication in a solid-state environment with qubits carried by electron spins. We propose three schemes to produce spin-entangled electrons, where the required separation of the partner electrons is achieved via Coulomb interaction. The non-product spin-states originate either from the Cooper pairs found in a superconductor, or in the ground state of a quantum dot with an even number of electrons. In a second stage, we show how spin-entanglement carried by a singlet can be detected in a beam-splitter geometry by an increased (bunching) or decreased (antibunching) noise signal. We also discuss how a local spin-orbit interaction can be used to provide a continuous modulation of the noise as a signature of entanglement. Finally, we review how one can use a quantum dot as a spin-filter, a spin-memory read-out, a probe for single-spin decoherence and, ultimately, a single-spin measurement apparatus.
DOI
-
First Page
427
Last Page
442
Recommended Citation
SARAGA, D. S, BURKARD, G, EGUES, J. C, ENGEL, H. A, RECHER, P, & LOSS, D (2003). Towards Quantum Communication with Electron Spins. Turkish Journal of Physics 27 (5): 427-442. https://doi.org/-