Turkish Journal of Medical Sciences




Background/aim: The aim of this study was to investigate the healing effects of bone marrow-derived mesenchymal stem cells (BMMSCs) on experimental testicular torsion in rats. Materials and methods: Three groups consisting of 10 Wistar albino rats were created. In Group I, the left testicle was explored and relocated in the scrotum without any attempt to modify it. In Group II, the left testicle underwent torsion for three h and then was detorsed and relocated. In Group III, in addition to torsion and detorsion, BM-MSCs were administered intratesticularly. The rats were sacrificed on the seventh day, and the healing status of the testicles was investigated with histopathological and biochemical analyses. BM-MSC involvement was investigated by immunofluorescence microscopy. Statistical analysis was performed using SPSS 15.0. A p-value < 0.05 was considered statistically significant for all variables. Results: Immunofluorescence microscopy showed that BM-MSCs were located around the Leydig cells in Group III. Under light microscopy, the mean Johnsen Score of Group III was significantly higher than that of Group II (p = 0.035). The interleukin-10 (IL-10) level was significantly higher in Group III compared to Group II (p = 0.003). While the malondialdehyde (MDA) values in Group I (the control group) were lower than in the other groups (p = 0.037), the superoxide dismutase (SOD) values were similar (p = 0.158). Although there was no statistically significant difference between Group II and Group III in terms of MDA, it was lower in Group III. Although the tissue SOD levels were higher in Group III than in Group II, the difference was not statistically significant. Conclusion: This study has demonstrated that BM-MSCs significantly corrected the Johnsen Score and increased anti-inflammatory cytokine levels after testicular torsion. BM-MSCs can be used in testicular torsion as supportive therapy to minimize tissue damage.


Testicular torsion, children, bone marrow-derived mesenchymal stem cells

First Page


Last Page