Turkish Journal of Mathematics
DOI
10.55730/1300-0098.3564
Abstract
This paper focuses on examining the boundedness and asymptotic behavior of all solutions of the neutral difference equations\begin{equation}\Delta[x_{n}-p_{n}x_{n-\kappa}]+q_{n}x_{n-\ell}=0\quad\text{for}\ n=0,1,\cdots,\label{abseq1}\tag{$\star$}\end{equation}and\begin{equation}\Delta[x_{n}-px_{n-\kappa}]+q_{n}x_{n-\ell}=0\quad\text{for}\ n=0,1,\cdots,\label{abseq2}\tag{$\star\star$}\end{equation}where $\kappa,\ell\in\N$, $\{p_{n}\}\subset[0,1)$, $p\in[0,1)$ and $\{q_{n}\}\subset[0,\infty)$.Diverging from much of the existing literature, our results accommodate the scenario where$\{p_{n}\}\subset[\frac{1}{2},1)$ and $p\in[\frac{1}{2},1)$ for \eqref{abseq1} and \eqref{abseq2}, respectively.Furthermore, we underscore the practical implications of our results through the presentation of numerical examples. This paper focuses on examining the boundedness and asymptotic behavior of all solutions of the neutral difference equations \begin{equation} \Delta[x_{n}-p_{n}x_{n-\kappa}]+q_{n}x_{n-\ell}=0\quad\text{for}\ n=0,1,\cdots,\label{abseq1}\tag{$\star$} \end{equation} and \begin{equation} \Delta[x_{n}-px_{n-\kappa}]+q_{n}x_{n-\ell}=0\quad\text{for}\ n=0,1,\cdots,\label{abseq2}\tag{$\star\star$} \end{equation} where $\kappa,\ell\in\N$, $\{p_{n}\}\subset[0,1)$, $p\in[0,1)$ and $\{q_{n}\}\subset[0,\infty)$. Diverging from much of the existing literature, our results accommodate the scenario where $\{p_{n}\}\subset[\frac{1}{2},1)$ and $p\in[\frac{1}{2},1)$ for \eqref{abseq1} and \eqref{abseq2}, respectively. Furthermore, we underscore the practical implications of our results through the presentation of numerical examples.
Keywords
Neutral difference equations, variable coefficients, boundedness, asymptotic behavior
First Page
1110
Last Page
1126
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
ALSHARIF, NOUR H. M. and KARPUZ, BAŞAK
(2024)
"Some complementary results on asymptotic behavior of solutions of neutral difference equations,"
Turkish Journal of Mathematics: Vol. 48:
No.
6, Article 9.
https://doi.org/10.55730/1300-0098.3564
Available at:
https://journals.tubitak.gov.tr/math/vol48/iss6/9