Turkish Journal of Mathematics
DOI
10.55730/1300-0098.3550
Abstract
In this paper, transmission eigenvalues of a Schrödinger equation have been studied by constructing a new inner product and using Weyl theory. Necessary conditions for these eigenvalues to be negative, real and finite have been examined. This method has provided a new framework related to transmission eigenvalue problems and investigation of their properties. The conclusions has been verified for special case of the problem.
Keywords
Spectral theory, transmission condition, eigenvalues, Schrödinger equation
First Page
930
Last Page
940
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
YILDIRIM, EMEL and BAIRAMOV, ELGIZ
(2024)
"Transmission eigenvalues problem of a Schrödinger equation,"
Turkish Journal of Mathematics: Vol. 48:
No.
5, Article 9.
https://doi.org/10.55730/1300-0098.3550
Available at:
https://journals.tubitak.gov.tr/math/vol48/iss5/9