Turkish Journal of Mathematics
Abstract
The Berezin symbol $\tilde{A}$ of an operator $A$ on the reproducing kernel Hilbert space $\mathcal{H}\left( \Omega\right) $ over some set $\Omega$ with the reproducing kernel $k_{\lambda}$ is defined by \[ \tilde{A}(\lambda)=\left\langle {A\frac{{k_{\lambda}}}{{\left\Vert {k_{\lambda}}\right\Vert }},\frac{{k_{\lambda}}}{{\left\Vert {k_{\lambda}% }\right\Vert }}}\right\rangle ,\ \lambda\in\Omega. \] We study the existence of invariant subspaces for Bergman space operators in terms of Berezin symbols.
DOI
10.55730/1300-0098.3485
Keywords
Reproducing kernel Hilbert space, Berezin symbol, Bergman space, invariant subspace, Duhamel product
First Page
2139
Last Page
2148
Recommended Citation
GARAYEV, M. T (2023). Invariant subspaces of operators via Berezin symbols and Duhamel product. Turkish Journal of Mathematics 47 (7): 2139-2148. https://doi.org/10.55730/1300-0098.3485