Turkish Journal of Mathematics
DOI
10.55730/1300-0098.3485
Abstract
The Berezin symbol $\tilde{A}$ of an operator $A$ on the reproducing kernel Hilbert space $\mathcal{H}\left( \Omega\right) $ over some set $\Omega$ with the reproducing kernel $k_{\lambda}$ is defined by \[ \tilde{A}(\lambda)=\left\langle {A\frac{{k_{\lambda}}}{{\left\Vert {k_{\lambda}}\right\Vert }},\frac{{k_{\lambda}}}{{\left\Vert {k_{\lambda}% }\right\Vert }}}\right\rangle ,\ \lambda\in\Omega. \] We study the existence of invariant subspaces for Bergman space operators in terms of Berezin symbols.
Keywords
Reproducing kernel Hilbert space, Berezin symbol, Bergman space, invariant subspace, Duhamel product
First Page
2139
Last Page
2148
Recommended Citation
GARAYEV, MÜBARİZ T.
(2023)
"Invariant subspaces of operators via Berezin symbols and Duhamel product,"
Turkish Journal of Mathematics: Vol. 47:
No.
7, Article 19.
https://doi.org/10.55730/1300-0098.3485
Available at:
https://journals.tubitak.gov.tr/math/vol47/iss7/19