•  
  •  
 

Turkish Journal of Mathematics

DOI

10.55730/1300-0098.3485

Abstract

The Berezin symbol $\tilde{A}$ of an operator $A$ on the reproducing kernel Hilbert space $\mathcal{H}\left( \Omega\right) $ over some set $\Omega$ with the reproducing kernel $k_{\lambda}$ is defined by \[ \tilde{A}(\lambda)=\left\langle {A\frac{{k_{\lambda}}}{{\left\Vert {k_{\lambda}}\right\Vert }},\frac{{k_{\lambda}}}{{\left\Vert {k_{\lambda}% }\right\Vert }}}\right\rangle ,\ \lambda\in\Omega. \] We study the existence of invariant subspaces for Bergman space operators in terms of Berezin symbols.

Keywords

Reproducing kernel Hilbert space, Berezin symbol, Bergman space, invariant subspace, Duhamel product

First Page

2139

Last Page

2148

Included in

Mathematics Commons

Share

COinS