Turkish Journal of Mathematics
DOI
10.55730/1300-0098.3458
Abstract
In this paper, we consider the following critical fractional semilinear Neumann problem \begin{equation*} \begin{cases} (-\Delta)^{1/2}u+\lambda u=u^{\frac{n+1}{n-1}},~u>0\quad&\, \mathrm{in}\ \Omega,\\ \partial_\nu{u}=0 &\mathrm{on}\ \partial\Omega, \end{cases} \end{equation*} where $\Omega\subset\mathbb{R}^n~(n\geq5)$ is a smooth bounded domain, $\lambda>0$ and $\nu$ is the outward unit normal to $\partial\Omega$. We prove that there exists a constant $\lambda_0>0$ such that the above problem admits a minimal energy solution for $\lambda<\lambda_0$. Moreover, if $\Omega$ is convex, we show that this solution is constant for sufficiently small $\lambda$.
Keywords
Fractional Laplacian operator, Neumann boundary condition, critical exponent
First Page
1715
Last Page
1732
Recommended Citation
JIN, ZHENFENG and SUN, HONGRUI
(2023)
"Fractional semilinear Neumann problem with critical nonlinearity,"
Turkish Journal of Mathematics: Vol. 47:
No.
6, Article 8.
https://doi.org/10.55730/1300-0098.3458
Available at:
https://journals.tubitak.gov.tr/math/vol47/iss6/8