Turkish Journal of Mathematics
DOI
10.55730/1300-0098.3421
Abstract
Let $(M,g)$ be a compact Riemannian manifold. In this paper, we prove Struwe-type decomposition formulas for Palais-Smale sequences of functional energies corresponding to the equation: \begin{equation*} \Delta_{g,p}u-\frac{h(x)}{(\rho_{x_{o}}(x))^{s}}\left u\right ^{p-2}u =f(x)\left u\right ^{p^{\ast}-2}u, \end{equation*} where $\Delta_{g,p} $ is the $p-$Laplacian operator, $p^*=\frac{np}{n-p}$, $0
Keywords
Riemannian manifolds, Yamabe equation, P-Laplacian, Sobolev exponent, Hardy potential, blow up analysis, bubbles
First Page
1191
Last Page
1219
Recommended Citation
GHOMARI, TEWFIK and MALIKI, YOUSSEF
(2023)
"Struwe compactness results for a critical $p-$Laplacian equation involving critical and subcritical Hardy potential on compact Riemannian manifolds,"
Turkish Journal of Mathematics: Vol. 47:
No.
4, Article 11.
https://doi.org/10.55730/1300-0098.3421
Available at:
https://journals.tubitak.gov.tr/math/vol47/iss4/11