•  
  •  
 

Turkish Journal of Mathematics

DOI

10.55730/1300-0098.3421

Abstract

Let $(M,g)$ be a compact Riemannian manifold. In this paper, we prove Struwe-type decomposition formulas for Palais-Smale sequences of functional energies corresponding to the equation: \begin{equation*} \Delta_{g,p}u-\frac{h(x)}{(\rho_{x_{o}}(x))^{s}}\left u\right ^{p-2}u =f(x)\left u\right ^{p^{\ast}-2}u, \end{equation*} where $\Delta_{g,p} $ is the $p-$Laplacian operator, $p^*=\frac{np}{n-p}$, $0

Keywords

Riemannian manifolds, Yamabe equation, P-Laplacian, Sobolev exponent, Hardy potential, blow up analysis, bubbles

First Page

1191

Last Page

1219

Included in

Mathematics Commons

Share

COinS