•  
  •  
 

Turkish Journal of Mathematics

DOI

10.55730/1300-0098.3354

Abstract

The purpose of this paper is to study the distribution of zeros of solutions to a first-order neutral differential equation of the form \begin{equation*} \left[x(t) + p(t) x(t-\tau)\right]' + q(t) x(t-\sigma) = 0, \quad t \geq t_0, \end{equation*} where $p\in C([t_0,\infty),[0,\infty))$, $q \in C([t_0,\infty),(0,\infty))$, $\tau,\sigma>0$, and $\sigma>\tau$. We obtain new upper bound estimates for the distance between consecutive zeros of solutions, which improve upon many of the previously known ones. The results are formulated so that they can be generalized without much effort to equations for which the distribution of zeros problem is related to the study of this property for a first-order delay differential inequality. The strength of our results is demonstrated viatwo illustrative examples.

Keywords

Distribution of zeros, neutral differential equations, oscillation

First Page

195

Last Page

212

Included in

Mathematics Commons

Share

COinS