•  
  •  
 

Turkish Journal of Mathematics

Authors

YAHYA ÖZ

Abstract

An analytical solution to the incompressible Navier-Stokes momentum equations for a divergence-free flow $\boldsymbol{\nabla}\cdot \vec u\left(\vec x,t\right)=0$ with time-dependent dynamic viscosity $\mu\left(t\right)$ is presented. The demonstrated methodology holds for the physically relevent three dimensions. The constructed flow velocities $\vec u\left(\vec x,t\right)$ are eigenvectors of the vector operator curl. Moreover, vortex $\vec \omega\left(\vec x,t\right)$, helicity $H\left(\vec x,t\right)$, enstrophy $\mathcal{E}\left(t\right)$ and enstrophy evolution $\frac{\mathrm{d}\mathcal{E}\left(t\right)}{\mathrm{d}t}$ are explicitly determined.

DOI

10.55730/1300-0098.3327

Keywords

Flow behavior, fluid dynamics, partial differential equations

First Page

3192

Last Page

3200

Included in

Mathematics Commons

Share

COinS