Turkish Journal of Mathematics
Abstract
The continuous wavelet transform in higher dimensions is used to prove the regularity of weak solutions $u \in L^p(\mathbb R^n)$ under $Qu = f$ where $f$ belongs to the Triebel-Lizorkin space $F^{r,q}_p(\mathbb R^n)$ where $1 < p,q < \infty$, $0< r 0$ with positive constant coefficients $c_{\beta}$.
DOI
10.55730/1300-0098.3325
Keywords
Admissible function, continuous wavelet transform, Triebel-Lizorkin spaces, weak solution, regularity, differential operators
First Page
3159
Last Page
3170
Recommended Citation
OLMO, A. L, BARRIGUETE, V. A, & NAVARRO, J (2022). Continuous wavelet transform on Triebel-Lizorkin spaces. Turkish Journal of Mathematics 46 (8): 3159-3170. https://doi.org/10.55730/1300-0098.3325