Turkish Journal of Mathematics
Abstract
The continuous wavelet transform in higher dimensions is used to prove the regularity of weak solutions $u \in L^p(\mathbb R^n)$ under $Qu = f$ where $f$ belongs to the Triebel-Lizorkin space $F^{r,q}_p(\mathbb R^n)$ where $1 < p,q < \infty$, $0< r 0$ with positive constant coefficients $c_{\beta}$.
DOI
10.55730/1300-0098.3325
Keywords
Admissible function, continuous wavelet transform, Triebel-Lizorkin spaces, weak solution, regularity, differential operators
First Page
3159
Last Page
3170
Recommended Citation
OLMO, ANTONIO L. BAISÓN; BARRIGUETE, VÍCTOR A. CRUZ; and NAVARRO, JAIME
(2022)
"Continuous wavelet transform on Triebel-Lizorkin spaces,"
Turkish Journal of Mathematics: Vol. 46:
No.
8, Article 7.
https://doi.org/10.55730/1300-0098.3325
Available at:
https://journals.tubitak.gov.tr/math/vol46/iss8/7