Turkish Journal of Mathematics
DOI
10.55730/1300-0098.3277
Abstract
In the present article, making use of the $(p,q)$-Hurwitz zeta function, we provide and investigate a new integral operator. Also, we define two families ${\mathcal{S}\mathcal{M}}_{p,q}\left(\xi ,\zeta,\delta,u,\tau \right)$ and ${\mathcal{S}\mathcal{C}}_{p,q}\left(\lambda, \zeta,\vartheta,u,\tau \right)$ of biunivalent and holomorphic functions in the unit disc connected with $(p,q)$-Chebyshev Polynomials. Then we find coefficient estimates $\left a_2\right $ and $\left a_3\right .$ Finally, we obtain Fekete-Szeg$\ddot{\mathrm{o}}$ inequalities for these families.
Keywords
Biunivalent function, $(p, q)$-Chebyshev polynomial, $(p, q)$-Hurwitz zeta function, a new integral operator, coefficient estimates, and Fekete-Szeg$\ddot{\mathrm{o}}$ inequality
First Page
2415
Last Page
2429
Recommended Citation
HADI, SAREM H. and DARUS, MASLINA
(2022)
"$(p,q)$-Chebyshev polynomials for the families of biunivalent function associating a new integral operator with $(p,q)$-Hurwitz zeta function,"
Turkish Journal of Mathematics: Vol. 46:
No.
6, Article 25.
https://doi.org/10.55730/1300-0098.3277
Available at:
https://journals.tubitak.gov.tr/math/vol46/iss6/25