Turkish Journal of Mathematics
Abstract
The main objective of this paper is to calculate the forgotten topological index of the zero-divisor graph of $\mathbb{Z}_n$. Let $p$, $q$ and $r$ be distinct prime numbers. We calculate the forgotten topological index of the ring $\Gamma(\mathbb{Z}_n)$ where $n=p^\alpha, pq, p^2q, p^2q^2, pqr$. Also, we study the forgotten topological index of the product of rings of integers modulo $n$. We construct a polynomial algorithm to compute the forgotten topological index of $\Gamma(\mathbb{Z}_n)$.
DOI
10.55730/1300-0098.3236
Keywords
Topological indices, forgotten topological index, zero-divisor graph, vertex degree, algorithm
First Page
1845
Last Page
1863
Recommended Citation
GÜRSOY, A, GÜRSOY, N. K, & ÜLKER, A (2022). Computing forgotten topological index of zero-divisor graphs of commutative rings. Turkish Journal of Mathematics 46 (5): 1845-1863. https://doi.org/10.55730/1300-0098.3236