Turkish Journal of Mathematics
DOI
10.55730/1300-0098.3161
Abstract
Let $A$ be a nontrivial abelian group. A simple graph $G = (V, E)$ is $A$-antimagic, if there exists an edge labeling $f: E(G) \to A \backslash \{0\}$ such that the induced vertex labeling $f^+(v)=\sum_{uv\in E(G)} f(uv)$ is a one-to-one map. The {integer-antimagic spectrum} of a graph $G$ is the set IAM$(G) = \{k: G {is} \mathbb{Z}_k{-antimagic and } k \geq 2\}$. In this paper, we determine the integer-antimagic spectra for a disjoint union of Hamiltonian graphs.
Keywords
Disjoint union, Hamiltonian graphs, graph labeling, integer-antimagic labeling
First Page
1310
Last Page
1317
Recommended Citation
ODABAŞI, UĞUR; ROBERTS, DAN; and LOW, RICHARD M.
(2022)
"The integer-antimagic spectra of a disjoint union of Hamiltonian graphs,"
Turkish Journal of Mathematics: Vol. 46:
No.
4, Article 14.
https://doi.org/10.55730/1300-0098.3161
Available at:
https://journals.tubitak.gov.tr/math/vol46/iss4/14