•  
  •  
 

Turkish Journal of Mathematics

DOI

10.55730/1300-0098.3160

Abstract

Let $ A_\varepsilon (x,f)$ be the Abel-Poisson means of an integrable function $f(x)$ on $n$-dimensional torus $ \mathbf{T}^n, \; \;\; i= 1,\ldots,n \; (n\geq 2) $ in the Euclidean $n$-space. The famous Bochner's theorem asserts that for any function $ f\in L^1(\mathbf{T}^n)$ the Abel-Poisson means $A_\varepsilon (x,f)$ are pointwise converge to $f(x)$ a.e., that is, $$ \underset{\varepsilon \rightarrow0^+}{\lim}\, A_\varepsilon (x,f)= f(x), \;\; a.e.\; x\in \mathbf{T}^n. $$ In this paper we investigate the rate of convergence of Abel-Poisson means at the so-called $\mu$-smoothness point of $f$ .

First Page

1302

Last Page

1309

Included in

Mathematics Commons

Share

COinS