•  
  •  
 

Turkish Journal of Mathematics

DOI

10.55730/1300-0098.3157

Abstract

We consider simply connected $4$-manifolds admitting Lefschetz fibrations over the $2$-sphere. We explicitly construct nonhyperelliptic and hyperelliptic Lefschetz fibrations of genus $4$ on simply-connected $4$-manifolds which are exotic symplectic $4$-manifolds in the homeomorphism classes of $\mathbb{C} P^{2}\#8\overline{\mathbb{C} P^{2}}$ and $\mathbb{C} P^{2}\#9\overline{\mathbb{C} P^{2}}$, respectively. From these, we provide upper bounds for the minimal number of singular fibers of such fibrations. In addition, we prove that this number is equal to $18$ for $g=3$ when such fibrations are hyperelliptic. Moreover, we discuss these numbers for higher genera.

First Page

1268

Last Page

1290

Included in

Mathematics Commons

Share

COinS