•  
  •  
 

Turkish Journal of Mathematics

DOI

10.55730/1300-0098.3126

Abstract

The concepts of strong convergence, statistical convergence, and uniform integrability are of some interest in convergence theories. Recently Ünver and Orhan [19] have introduced the concepts of $P$-strong and $P$-statistical convergences with the help of power series methods and established a relationship between them. In the present paper, we introduce the notion of $P$-strong convergence with respect to an Orlicz function and prove that all these three concepts are boundedly equivalent provided that Orlicz function satisfies $\triangle _{2}-$condition. We also get an improvement of this result by using the concept of uniform integrability.

First Page

832

Last Page

838

Included in

Mathematics Commons

Share

COinS