•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-2105-21

Abstract

This paper aims to introduce 2-absorbing $\phi$-$\delta$-primary ideals over commutative rings which unify the concepts of all generalizations of 2-absorbing and 2-absorbing primary ideals. Let $A $be a commutative ring with a nonzero identity and $\mathcal{I(A)}$ be the set of all ideals of $A$. Suppose that $\delta:\mathcal{I(A)}\rightarrow\mathcal{I(A)}$ is an expansion function and $\phi:\mathcal{I(A)}\rightarrow\mathcal{I(A)}% \cup\left\{ \emptyset\right\} $ is a reduction function. A proper ideal $Q\ $of $A\ $is said to be a 2-absorbing $\phi$-$\delta$-primary if whenever $abc\in Q-\phi(Q)$,\ where $a,b,c\in R,\ $then either $ab\in Q$ or $ac\in\delta(Q)$ or $bc\in\delta(Q). $Various examples, properties, and characterizations of this new class of ideals are given.

First Page

1927

Last Page

1939

Included in

Mathematics Commons

Share

COinS