•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-2011-92

Abstract

In this research article, a novel $\Phi$-fractional Bielecki-type norm introduced by Sousa and Oliveira [23] is used to obtain results on uniqueness and Ulam stability of solutions for a new class of multiterms fractional differential equations in the framework of generalized Caputo fractional derivative. The uniqueness results are obtained by employing Banach' and Perov's fixed point theorems. While the $\Phi$-fractional Gronwall type inequality and the concept of the matrices converging to zero are implemented to examine different types of stabilities in the sense of Ulam-Hyers (UH) of the given problems. Finally, two illustrative examples are provided to demonstrate the validity of our theoretical findings.

First Page

2307

Last Page

2322

Included in

Mathematics Commons

Share

COinS