Turkish Journal of Mathematics
Abstract
For analytic functions $f\left( z\right) $ in the class $A_{n},$ fractional calculus (fractional integrals and fractional derivatives) $D_{z}^{\lambda }f\left( z\right) $ of order $\lambda $ are introduced. Applying $% D_{z}^{\lambda }f\left( z\right) $ for $f\left( z\right) \in A_{n},$ we introduce the interesting subclass $A_{n}\left( \alpha _{m},\beta ,\rho ,\lambda \right) $ of $A_{n}.$ The object of this paper is to discuss some properties of $f\left( z\right) $ concerning $D_{z}^{\lambda }f\left( z\right) .$
DOI
10.3906/mat-2103-23
Keywords
Analytic function, fractional integral, fractional derivative, Miller and Mocanu lemma
First Page
2025
Last Page
2034
Recommended Citation
UYANIK, N, & OWA, S (2021). Some applications of fractional calculus for analytic functions. Turkish Journal of Mathematics 45 (5): 2025-2034. https://doi.org/10.3906/mat-2103-23