Turkish Journal of Mathematics
DOI
10.3906/mat-2103-23
Abstract
For analytic functions $f\left( z\right) $ in the class $A_{n},$ fractional calculus (fractional integrals and fractional derivatives) $D_{z}^{\lambda }f\left( z\right) $ of order $\lambda $ are introduced. Applying $% D_{z}^{\lambda }f\left( z\right) $ for $f\left( z\right) \in A_{n},$ we introduce the interesting subclass $A_{n}\left( \alpha _{m},\beta ,\rho ,\lambda \right) $ of $A_{n}.$ The object of this paper is to discuss some properties of $f\left( z\right) $ concerning $D_{z}^{\lambda }f\left( z\right) .$
Keywords
Analytic function, fractional integral, fractional derivative, Miller and Mocanu lemma
First Page
2025
Last Page
2034
Recommended Citation
UYANIK, NESLİHAN and OWA, SHİGEYOSHİ
(2021)
"Some applications of fractional calculus for analytic functions,"
Turkish Journal of Mathematics: Vol. 45:
No.
5, Article 10.
https://doi.org/10.3906/mat-2103-23
Available at:
https://journals.tubitak.gov.tr/math/vol45/iss5/10