Turkish Journal of Mathematics
Article Title
Half Inverse Problems For The Impulsive Quadratic Pencil With The Discontinouty Coefficient
DOI
10.3906/mat-2104-40
Abstract
In this paper, we study the inverse spectral problem for the quadratic differential pencils with discontinuity coefficient on $\left[ 0,\pi\right] $ with separable boundary conditions and the impulsive conditions at the point $x=\dfrac{\pi}{2}$. We prove that two potential functions on the interval $\left[ 0,\pi\right] $, and the parameters in the boundary and impulsive conditions can be determined from a sequence of eigenvalues for two cases: (i) The potentials are given on $\left( 0,\dfrac{\pi}{4}\left( 1+\alpha\right) \right) ,$ (ii) The potentials are given on $\left( \dfrac{\pi}{4}\left( 1+\alpha\right) ,\pi\right) $, where $0
First Page
1847
Last Page
1870
Recommended Citation
AMİROV, RAUF and DURAK, SEVİM
(2021)
"Half Inverse Problems For The Impulsive Quadratic Pencil With The Discontinouty Coefficient,"
Turkish Journal of Mathematics: Vol. 45:
No.
4, Article 27.
https://doi.org/10.3906/mat-2104-40
Available at:
https://journals.tubitak.gov.tr/math/vol45/iss4/27