•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-2104-22

Abstract

Let $T(X)$ be the full transformation semigroup on the set $X$. For a fixed nonempty subset $Y$ of $X$, let \begin{equation*} PG_Y(X) = \{\alpha\in T(X) : \alpha _Y\in G(Y)\} \end{equation*} where $G(Y)$ is the permutation group on $Y$. It is known that $PG_Y(X)$ is a regular subsemigroup of $T(X)$. In this paper, we give a simpler description of Green's relations and characterize the ideals of $PG_Y(X)$. Moreover, we prove some isomorphism theorems for $PG_Y(X)$. For finite sets, we investigate the cardinalities of $PG_Y(X)$ and of its subsets of idempotents, and we also calculate their ranks.

Keywords

Green's relations, ideal, isomorphism theorem, rank

First Page

1789

Last Page

1800

Included in

Mathematics Commons

Share

COinS