Turkish Journal of Mathematics
DOI
10.3906/mat-2101-120
Abstract
Let $p$ be a prime number such that $p=2$ or $p\equiv 1\pmod 4$. Let $\varepsilon_p$ denote the fundamental unit of $\mathbb{Q}(\sqrt{p})$ and let $a$ be a positive square-free integer. The main aim of this paper is to determine explicitly the Hilbert genus field of the imaginary cyclic quartic fields of the form $\mathbb{Q}(\sqrt{-a\varepsilon_p\sqrt{p}})$.
First Page
1689
Last Page
1704
Recommended Citation
HAJJAMI, MOULAY AHMED and EDDIN, MOHAMED MAHMOUD CHEMS
(2021)
"On Hilbert genus fields of imaginary cyclic quartic fields,"
Turkish Journal of Mathematics: Vol. 45:
No.
4, Article 17.
https://doi.org/10.3906/mat-2101-120
Available at:
https://journals.tubitak.gov.tr/math/vol45/iss4/17