•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-2101-120

Abstract

Let $p$ be a prime number such that $p=2$ or $p\equiv 1\pmod 4$. Let $\varepsilon_p$ denote the fundamental unit of $\mathbb{Q}(\sqrt{p})$ and let $a$ be a positive square-free integer. The main aim of this paper is to determine explicitly the Hilbert genus field of the imaginary cyclic quartic fields of the form $\mathbb{Q}(\sqrt{-a\varepsilon_p\sqrt{p}})$.

Keywords

Imaginary cyclic quartic fields, unramified extensions, Hilbert genus fields

First Page

1689

Last Page

1704

Included in

Mathematics Commons

Share

COinS