•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-2008-19

Abstract

Let $\mathcal{C}_{n}$ be the semigroup of all order-preserving and decreasing transformations on $X=\{1,\ldots ,n\}$ under its natural order, and let $N(\mathcal{C}_{n})$ be the subsemigroup of all nilpotent elements of $\mathcal{C}_{n}$. For $1\leq r \leq n-1$, let \begin{eqnarray*} N(\mathcal{C}_{n,r})&=&\{ \alpha\in N(\mathcal{C}_{n}) : \lvert im(\alpha)\rvert \leq r\} ,\\ N_{r}(\mathcal{C}_{n})&=&\{\alpha\in N\mathcal({C}_{n}):\alpha\mbox{ is an } m\mbox{-potent for any } 1\leq m\leq r\} . \end{eqnarray*} In this paper we find the cardinality and the rank of the subsemigroup $N(\mathcal{C}_{n,r})$ of $\mathcal{C}_{n}$. Moreover, we show that the set $N_{r}(\mathcal{C}_{n})$ is a subsemigroup of $N(\mathcal{C}_{n})$ and then, we find a lower bound for the rank of $N_{r}(\mathcal{C}_{n})$.

Keywords

Order-preserving and decreasing transformation, nilpotent subsemigroups, $m$-potent element, generating set, rank

First Page

1626

Last Page

1634

Included in

Mathematics Commons

Share

COinS