Turkish Journal of Mathematics
DOI
10.3906/mat-2101-20
Abstract
In this paper,we define a class of analytic functions $F_{\left( \beta ,\lambda \right) }\left( H,\alpha ,\delta ,\mu \right) ,$ satisfying the following subordinate condition associated with Chebyshev polynomials \begin{equation*} \left\{ \alpha \left[ \frac{zG^{^{\prime }}\left( z\right) }{G\left( z\right) }\right] ^{\delta }+\left( 1-\alpha \right) \left[ \frac{% zG^{^{\prime }}\left( z\right) }{G\left( z\right) }\right] ^{\mu }\left[ 1+% \frac{zG^{^{\prime \prime }}\left( z\right) }{G^{^{\prime }}\left( z\right) }% \right] ^{1-\mu }\right\} \prec H\left( z,t\right) , \end{equation*}% where $G\left( z\right) =\lambda \beta z^{2}f^{^{\prime \prime }}\left( z\right) +\left( \lambda -\beta \right) zf^{^{\prime }}\left( z\right) +\left( 1-\lambda +\beta \right) f\left( z\right) ,$ $0\leq \alpha \leq 1,$ $% 1\leq \delta \leq 2,$ $0\leq \mu \leq 1,$ $0\leq \beta \leq \lambda \leq 1$ and $t\in \left( \frac{1}{2},1\right] $. We obtain initial coefficients $% \left\vert a_{2}\right\vert $ and $\left\vert a_{3}\right\vert $ for this subclass by means of Chebyshev polynomials expansions of analytic functions in $\mathcal{D}.$ Furthermore, we solve Fekete-Szegö problem for functions in this subclass.We also provide relevant connections of our results with those considered in earlier investigations. The results presented in this paper improve the earlier investigations.
Keywords
Analytic and univalent functions, subordination, Chebyshev polynomials, coefficient estimates, Fekete-Szegö inequality
First Page
1195
Last Page
1208
Recommended Citation
KAMALİ, MUHAMMET; ÇAĞLAR, MURAT; DENİZ, ERHAN; and TURABAEV, MIRZAOLIM
(2021)
"Fekete-Szegö problem for a new subclass of analytic functions satisfying subordinate condition associated with Chebyshev polynomials,"
Turkish Journal of Mathematics: Vol. 45:
No.
3, Article 8.
https://doi.org/10.3906/mat-2101-20
Available at:
https://journals.tubitak.gov.tr/math/vol45/iss3/8