Turkish Journal of Mathematics
Abstract
In this paper, we classify relatively minimal genus-$1$ holomorphic Lefschetz pencils up to smooth isomorphism. We first show that such a pencil is isomorphic to either the pencil on $P^1\times P^1$ of bidegree $(2,2)$ or a blow-up of the pencil on $P^2$ of degree $3$, provided that no fiber of a pencil contains an embedded sphere (note that one can easily classify genus-$1$ Lefschetz pencils with an embedded sphere in a fiber). We further determine the monodromy factorizations of these pencils and show that the isomorphism class of a blow-up of the pencil on $P^2$ of degree $3$ does not depend on the choice of blown-up base points. We also show that the genus-$1$ Lefschetz pencils constructed by Korkmaz-Ozbagci (with nine base points) and Tanaka (with eight base points) are respectively isomorphic to the pencils on $P^2$ and $P^1\times P^1$ above, in particular these are both holomorphic.
DOI
10.3906/mat-2008-88
Keywords
Lefschetz pencil, monodromy factorization, holed torus relation, braid monodromy
First Page
1079
Last Page
1119
Recommended Citation
HAMADA, NORIYUKI and HAYANO, KENTA
(2021)
"Classification of genus-$1$ holomorphic Lefschetz pencils,"
Turkish Journal of Mathematics: Vol. 45:
No.
3, Article 2.
https://doi.org/10.3906/mat-2008-88
Available at:
https://journals.tubitak.gov.tr/math/vol45/iss3/2