Turkish Journal of Mathematics
DOI
10.3906/mat-2011-12
Abstract
In this work, we consider the first-order dynamic equations \begin{equation*} x^{\Delta }(t)+p(t)x\left( \tau (t)\right) =0,\text{ }t\in \lbrack t_{0},\infty )_{\mathbb{T}} \end{equation*} where $p\in C_{rd}\left( [t_{0},\infty )_{\mathbb{T}},\mathbb{R}^{+}\right) , $ $\tau \in C_{rd}\left( [t_{0},\infty )_{\mathbb{T}},\mathbb{T}\right) $ and $\tau (t)\leq t,\ \lim_{t\rightarrow \infty }\tau (t)=\infty $. When the delay term $\tau (t)$ is not necessarily monotone, we present a new sufficient condition for the oscillation of first-order delay dynamic equations on time scales.
Keywords
Dynamic equations, nonmonotone, oscillation, time scales
First Page
487
Last Page
495
Recommended Citation
ÖCALAN, ÖZKAN
(2021)
"An improved oscillation criteria for first order dynamic equations,"
Turkish Journal of Mathematics: Vol. 45:
No.
1, Article 30.
https://doi.org/10.3906/mat-2011-12
Available at:
https://journals.tubitak.gov.tr/math/vol45/iss1/30