•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-2006-102

Abstract

Let $G$ be a finite abelian group. Ferraz, Guerreiro, and Polcino Milies (2014) proved that the number of $G$-equivalence classes of minimal abelian codes is equal to the number of $G$-isomorphism classes of subgroups for which corresponding quotients are cyclic. In this article, we prove that the notion of $G$-isomorphism is equivalent to the notion of isomorphism on the set of all subgroups $H$ of $G$ with the property that $G/H$ is cyclic. As an application, we calculate the number of non-$G$-equivalent minimal abelian codes for some specific family of abelian groups. We also prove that the number of non-$G$-equivalent minimal abelian codes is equal to the number of divisors of the exponent of $G$ if and only if for each prime $p$ dividing the order of $G$, the Sylow $p$-subgroups of $G$ are homocyclic.

First Page

445

Last Page

455

Included in

Mathematics Commons

Share

COinS