Turkish Journal of Mathematics
Abstract
IfS is a numerical semigroup and s ∈ S , we denote by next$_{S}$(s) = min {x ∈ S s < x}. Leta be an integer greater than or equal to two. A numerical semigroup is equidistant modulo a if next$_{S}$((s) - s - 1 is a multiple of a for every s ∈ S . In this note, we give algorithms for computing the whole set of equidistant numerical semigroups modulo a with fixed multiplicity, genus, and Frobenius number. Moreover, we will study this kind of semigroups with maximal embedding dimension.
DOI
10.3906/mat-2008-83
Keywords
Embedding dimension, Frobenius number, genus, multiplicity, modularly equidistant numerical semigroups, MED semigroups, numerical semigroup
First Page
288
Last Page
299
Recommended Citation
ROSALES, J. C, BRANCO, M. B, & TRAESEL, M. A (2021). Modularly equidistant numerical semigroups. Turkish Journal of Mathematics 45 (1): 288-299. https://doi.org/10.3906/mat-2008-83