Turkish Journal of Mathematics
Abstract
IfS is a numerical semigroup and s ∈ S , we denote by next$_{S}$(s) = min {x ∈ S s < x}. Leta be an integer greater than or equal to two. A numerical semigroup is equidistant modulo a if next$_{S}$((s) - s - 1 is a multiple of a for every s ∈ S . In this note, we give algorithms for computing the whole set of equidistant numerical semigroups modulo a with fixed multiplicity, genus, and Frobenius number. Moreover, we will study this kind of semigroups with maximal embedding dimension.
DOI
10.3906/mat-2008-83
Keywords
Embedding dimension, Frobenius number, genus, multiplicity, modularly equidistant numerical semigroups, MED semigroups, numerical semigroup
First Page
288
Last Page
299
Recommended Citation
ROSALES, JOSÉ CARLOS; BRANCO, MANUEL BAPTISTA; and TRAESEL, MÁRCIO ANDRE
(2021)
"Modularly equidistant numerical semigroups,"
Turkish Journal of Mathematics: Vol. 45:
No.
1, Article 17.
https://doi.org/10.3906/mat-2008-83
Available at:
https://journals.tubitak.gov.tr/math/vol45/iss1/17