Turkish Journal of Mathematics
DOI
10.3906/mat-2008-83
Abstract
IfS is a numerical semigroup and s ∈ S , we denote by next$_{S}$(s) = min {x ∈ S s < x}. Leta be an integer greater than or equal to two. A numerical semigroup is equidistant modulo a if next$_{S}$((s) - s - 1 is a multiple of a for every s ∈ S . In this note, we give algorithms for computing the whole set of equidistant numerical semigroups modulo a with fixed multiplicity, genus, and Frobenius number. Moreover, we will study this kind of semigroups with maximal embedding dimension.
Keywords
Embedding dimension, Frobenius number, genus, multiplicity, modularly equidistant numerical semigroups, MED semigroups, numerical semigroup
First Page
288
Last Page
299
Recommended Citation
ROSALES, JOSÉ CARLOS; BRANCO, MANUEL BAPTISTA; and TRAESEL, MÁRCIO ANDRE
(2021)
"Modularly equidistant numerical semigroups,"
Turkish Journal of Mathematics: Vol. 45:
No.
1, Article 17.
https://doi.org/10.3906/mat-2008-83
Available at:
https://journals.tubitak.gov.tr/math/vol45/iss1/17