Turkish Journal of Mathematics
DOI
10.3906/mat-2005-63
Abstract
In this paper, by using Parseval's formula and Schauder's fixed point theorem, we prove the existence and uniqueness of rotating periodic integrable solution of the second-order system $x''+f(t,x)=0$ with $x(t+T)=Qx(t)$ and $\int_{(k-1)T}^{kT}x(s)ds=0$, $k\in Z^+$ for any orthogonal matrix $Q$ when the nonlinearity $f$ satisfies nonresonance condition.
Keywords
Existence, uniqueness, rotating periodic integrable solution, Schauder's fixed point theorem
First Page
233
Last Page
243
Recommended Citation
CHENG, YI; JIN, KE; and AGARWAL, RAVI
(2021)
"Rotating periodic integrable solutions for second-order differential systems with nonresonance condition,"
Turkish Journal of Mathematics: Vol. 45:
No.
1, Article 14.
https://doi.org/10.3906/mat-2005-63
Available at:
https://journals.tubitak.gov.tr/math/vol45/iss1/14