•  
  •  
 

Turkish Journal of Mathematics

Abstract

In this paper, by using Parseval's formula and Schauder's fixed point theorem, we prove the existence and uniqueness of rotating periodic integrable solution of the second-order system $x''+f(t,x)=0$ with $x(t+T)=Qx(t)$ and $\int_{(k-1)T}^{kT}x(s)ds=0$, $k\in Z^+$ for any orthogonal matrix $Q$ when the nonlinearity $f$ satisfies nonresonance condition.

DOI

10.3906/mat-2005-63

Keywords

Existence, uniqueness, rotating periodic integrable solution, Schauder's fixed point theorem

First Page

233

Last Page

243

Included in

Mathematics Commons

Share

COinS