Turkish Journal of Mathematics
DOI
10.3906/mat-1806-14
Abstract
We prove the existence of entire large positive solutions to the system \begin{equation*} \begin{cases} (r^{N-1}\phi_{1}(u^{\prime}))^{\prime} = r^{N-1}P_{1}(r)f(u,v),\, \, 0 \leq r < \infty \\ (r^{N-1}\phi_{2}(v^{\prime}))^{\prime} = r^{N-1}P_{2}(r)g(u,v),\, \, 0 \leq r < \infty \\ u(0) = a, \, v(0) = b, \, u^{\prime}(0) = 0, \, v^{\prime}(0) = b, \end{cases} \end{equation*} where the functions $\phi_{i}(s) = \alpha_{i}(s^{2})s, \,\, i= 1, 2$ are odd, increasing homeomorphisms, $P_{1},P_{2}:[0,\infty)\to [0,\infty)$ are continuous, and $f,g:[0,\infty) \times [0,\infty) \to [0,\infty)$ are continuous and increasing functions.
Keywords
Elliptic system, positive solutions, radial solutions, large solutions
First Page
2155
Last Page
2165
Recommended Citation
PADHI, SESHADEV and PATI, SMITA
(2020)
"Entire large positive radial symmetry solutions for combined quasilinear elliptic system,"
Turkish Journal of Mathematics: Vol. 44:
No.
6, Article 14.
https://doi.org/10.3906/mat-1806-14
Available at:
https://journals.tubitak.gov.tr/math/vol44/iss6/14