Turkish Journal of Mathematics
Abstract
In this paper, we prove a Benedicks type theorem and a Donoho-Stark type theorem, for the generalized Fourier transform $\mathcal{F}_\alpha$ associated to some differential operators that we call Flensted-Jensen operators, in various spaces such $\mathrm{L}^1_\alpha(\mathbb{K})$, $\mathrm{L}^2_\alpha(\mathbb{K})$ and $\mathrm{L}^1_\alpha(\mathbb{K})\cap\mathrm{L}^2_\alpha(\mathbb{K})$, where $\mathbb{K}=\mathbb{R}_+\times\mathbb{R}$
DOI
10.3906/mat-2005-57
Keywords
Generalized Fourier transform, Benedicks theorem, Donoho-Stark theorem, uncertainty principle
First Page
1724
Last Page
1735
Recommended Citation
KAMOUN, L, & LAFFI, R (2020). Benedicks and Donoho-Stark type theorems. Turkish Journal of Mathematics 44 (5): 1724-1735. https://doi.org/10.3906/mat-2005-57