Turkish Journal of Mathematics
DOI
10.3906/mat-1907-24
Abstract
Let $W^{1,2}(\mathbb{R}^2)$ be the standard Sobolev space. Denote for any real number $p>2$ \begin{align*}\lambda_{p}=\inf\limits_{u\in W^{1,2}(\mathbb{R}^2),u\not\equiv0}\frac{\int_{\mathbb{R}^{2}}( \nabla u ^2+ u ^2)dx}{(\int_{\mathbb{R}^{2}} u ^pdx)^{2/p}}. \end{align*} Define a norm in $W^{1,2}(\mathbb{R}^2)$ by \begin{align*}\ u\ _{\alpha,p}=\left(\int_{\mathbb{R}^{2}}( \nabla u ^2+ u ^2)dx-\alpha(\int_{\mathbb{R}^{2}} u ^pdx)^{2/p}\right)^{1/2}\end{align*} where $0\leq\alpha2$ and $0\leq\alpha
Keywords
Trudinger--Moser inequality, extremal function, blow-up analysis
First Page
1092
Last Page
1114
Recommended Citation
LI, XIAOMENG
(2020)
"An improved Trudinger--Moser inequality and its extremal functions involving $L^p$-norm in $\mathbb{R}^2$,"
Turkish Journal of Mathematics: Vol. 44:
No.
4, Article 2.
https://doi.org/10.3906/mat-1907-24
Available at:
https://journals.tubitak.gov.tr/math/vol44/iss4/2