•  
  •  
 

Turkish Journal of Mathematics

Abstract

In this paper we solve the following system of difference equations \begin{equation*} x_{n+1}=\dfrac{z_{n-1}}{a+by_nz_{n-1}},\quad y_{n+1}=\dfrac{x_{n-1}}{a+bz_nx_{n-1}},\quad z_{n+1}=\dfrac{y_{n-1}}{a+bx_ny_{n-1}},\quad n\in \mathbb{N}_{0} \end{equation*} where parameters $a, b$ and initial values $x_{-1},x_{0},y_{-1},y_{0},z_{-1},z_{0}$ are nonzero real numbers, and give a representation of its general solution in terms of a specially chosen solutions to homogeneous linear difference equation with constant coefficients associated to the system.

DOI

10.3906/mat-2001-40

Keywords

System of difference equations, general solution, representation of solutions

First Page

1263

Last Page

1288

Included in

Mathematics Commons

Share

COinS