Turkish Journal of Mathematics
Abstract
In this paper, oscillation criteria are obtained for higher-order neutral-type nonlinear delay difference equations of the form% \begin{equation} \Delta (r_{n}(\Delta ^{k-1}(y_{n}+p_{n}y_{\tau _{n}}))+q_{n}f(y_{\sigma _{n}})=0\text{, }n\geq n_{0}\text{,} \tag{0.1} \end{equation}% where $r_{n},p_{n},q_{n}\in \lbrack n_{0},\infty ),$ $r_{n}>0$, $q_{n}>0$; $% 0\leq p_{n}\leq p_{0}0$; $\tau _{\sigma }=\sigma _{\tau }$; $\frac{f(u)}{u}\geq m>0$ for $u\neq 0$. Moreover, we provide some examples to illustrate our main results.
DOI
10.3906/mat-1703-6
Keywords
Oscillation, oscillatory, difference equations
First Page
729
Last Page
738
Recommended Citation
KÖPRÜBAŞI, T, ÜNAL, Z, & BOLAT, Y (2020). Oscillation criteria for higher-order neutral type difference equations. Turkish Journal of Mathematics 44 (3): 729-738. https://doi.org/10.3906/mat-1703-6