Turkish Journal of Mathematics
Abstract
In this work, the maximal convergence properties of partial sums of Faber-Laurent series in the variable exponent Smirnov classes of analytic functions defined on a doubly connected domain of the complex plane are investigated.
DOI
10.3906/mat-1911-87
Keywords
Faber-Laurent series, variable spaces, maximal convergence
First Page
389
Last Page
402
Recommended Citation
İSRAFİLZADE, D, & GÜRSEL, E (2020). Faber-Laurent series in variable Smirnov classes. Turkish Journal of Mathematics 44 (2): 389-402. https://doi.org/10.3906/mat-1911-87