•  
  •  
 

Turkish Journal of Mathematics

Abstract

The complex unit disk $\mathbb{D} = \{z\in\mathbb{C}\colon z < 1\}$ is endowed with Möbius addition $\oplus_M$ defined by $$ w\oplus_M z = \dfrac{w+z}{1+\overline{w}z}. $$ We prove that the metric $d_T$ defined on $\mathbb{D}$ by $d_T(w, z) = \tan^{-1} -w\oplus_M z $ is an invariant of Möbius transformations carrying $\mathbb{D}$ onto itself. We also prove that $(\mathbb{D}, d_T)$ and $(\mathbb{D}, d_P)$, where $d_P$ denotes the Poincaré metric, have the same isometry group and then classify the isometries of $(\mathbb{D}, d_T)$.

DOI

10.3906/mat-1902-13

Keywords

Möbius transformation, Poincaré metric, transformation invariant, isometry group, gyrogroup

First Page

2876

Last Page

2887

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 1
  • Usage
    • Downloads: 181
    • Abstract Views: 28
  • Captures
    • Readers: 1
see details

Included in

Mathematics Commons

Share

COinS