Turkish Journal of Mathematics
Abstract
In this paper we determine $b\in\F_{q^n}^*$ for which the polynomial $f(x)=x^{s+1}+bx\in\F_{q^n}[x]$ is a permutation polynomial and determine $b\in\F_{q^n}^*$ for which the polynomial $f(x)=x^{s+1}+bx\in\F_{q^n}[x]$ is a complete permutation polynomial where $s=\frac{q^n-1}{t}, t\in \mathbb{Z}^+$ such that $t\mid q^n-1$.
DOI
10.3906/mat-1806-83
Keywords
Permutation polynomials, complete permutation polynomials, finite fields
First Page
2154
Last Page
2160
Recommended Citation
ONGAN, P, & TEMÜR, B. G (2019). Some permutations and complete permutation polynomials over finite fields. Turkish Journal of Mathematics 43 (5): 2154-2160. https://doi.org/10.3906/mat-1806-83