Turkish Journal of Mathematics
DOI
10.3906/mat-1806-83
Abstract
In this paper we determine $b\in\F_{q^n}^*$ for which the polynomial $f(x)=x^{s+1}+bx\in\F_{q^n}[x]$ is a permutation polynomial and determine $b\in\F_{q^n}^*$ for which the polynomial $f(x)=x^{s+1}+bx\in\F_{q^n}[x]$ is a complete permutation polynomial where $s=\frac{q^n-1}{t}, t\in \mathbb{Z}^+$ such that $t\mid q^n-1$.
First Page
2154
Last Page
2160
Recommended Citation
ONGAN, PINAR and TEMÜR, BURCU GÜLMEZ
(2019)
"Some permutations and complete permutation polynomials over finite fields,"
Turkish Journal of Mathematics: Vol. 43:
No.
5, Article 6.
https://doi.org/10.3906/mat-1806-83
Available at:
https://journals.tubitak.gov.tr/math/vol43/iss5/6